Sixth Annual Conference on Carbon Capture & Sequestration

Capture – Aqueous Systems

New concept for CO₂ capture in flue gas: solvent with a lower energy of regeneration

P.L. Carrette, M. Jacquin, R. Cadours, P. Boucot,

P. Mougin, M. Prigent, A. Gibert.

May 7-10, 2007 • Sheraton Station Square • Pittsburgh, Pennsylvania

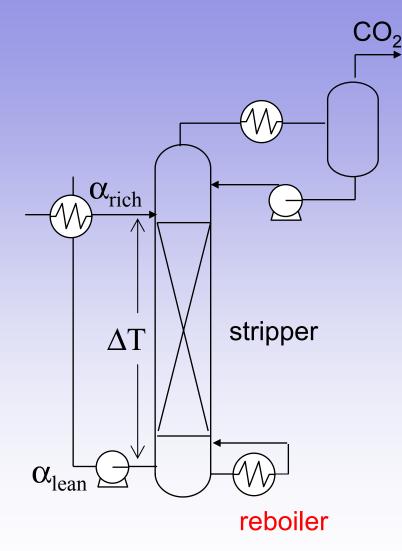
New concept for CO₂ capture in flue gas: solvent with a lower energy of regeneration

- Framework
- Presentation of the concept
- Experimental results
- Conclusion

Framework

CO₂ Capture in **Post combustion** with a **solvent**

- Main constraint : very low P_{CO2} (≈ 0.1 bar)
- To achieve 90% capture of CO₂
- ⇒ Chemical solvent (aqueous solution of amine)
 - ⇒ High energy of regeneration of the solvent


For MEA 30% (reference case) about 4 GJ/t_{CO2}.

Means of significantly reducing CO₂ capture costs:

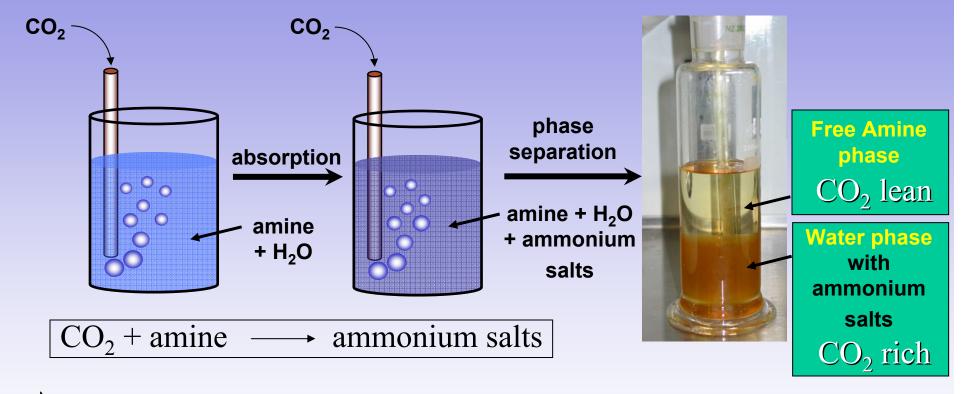
Reducing energy of regeneration to 2 GJ/t_{CO2} .

How can we do this with another solvent?

Energy of regeneration...

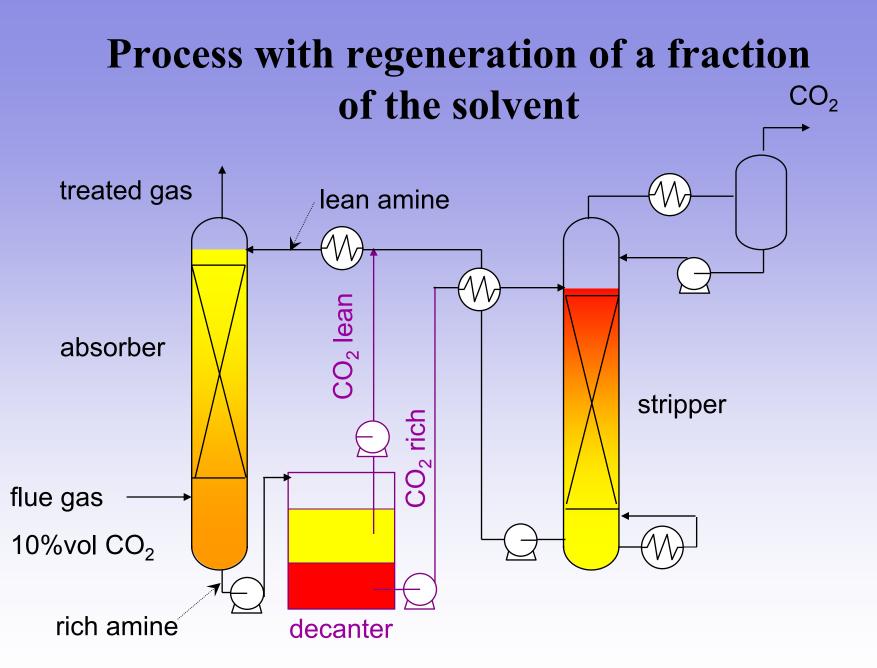
...is the sum of the energies needed for :

- heating of the solvent to boiling point (sensible heat):
- ~ flow rate of solvent to achieve 90% capture
- $\sim 1/\text{dynamic capacity} (\Delta \alpha = \alpha_{\text{rich}} \alpha_{\text{lean}})$
- breaking of the chemical bond (heat of reaction) : enthalpy of reaction ammonium salt \longrightarrow amine $+ CO_2$
- generating steam for CO₂ stripping
 (heat of vaporization)
 Vapor Liquid Equilibrium data

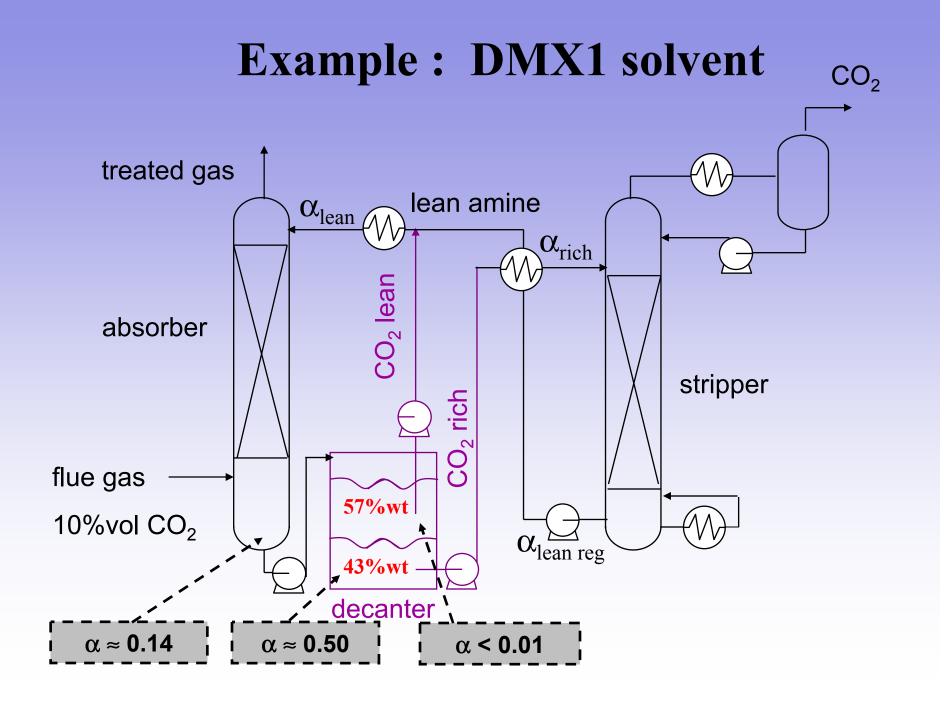

Comparison between a primary amine (MEA) and a tertiary amine (MDEA)

	MEA	MDEA
Dynamic capacity of the solvent at low $P_{CO2} (\approx 0.1 \text{bar})$	HIGH $\Delta \alpha \approx 0.25$	LOW $\Delta\alpha \approx 0.15$
Sensible heat	LOW	HIGH
Heat of reaction	HIGH $\Delta H \approx 85 \text{ kJ/mol}$	LOW $\Delta H \approx 50 \text{ kJ/mol}$
Heat of vaporization	HIGH	LOW

How can we reduce the heats of reaction and vaporization without increasing the sensible heat?


New concept: principle

A specific solvent which phase separates during CO₂ capture



- Lower sensible heat (Regeneration of a fraction of the solvent)

 Abnormally high CO₂ loading (CO₂ concentrated in one phase)
- **Lower energy of regeneration**

=> Standard process with only addition of a decanter

Energy of regeneration of DMX1

Calculation of energy of regeneration, simple model based on :

- Vapor Liquid Equilibrium data obtained at IFP
- Enthalpy of reaction : 60 kJ/mol (calorimetric measurements)
- $-\alpha_{rich} = 0.50$ (at Patm, 40°C, CO₂ 10%vol in N₂)
- $-\alpha_{\text{lean reg}} < 0.01$ (at the outlet of the stripper)

Total energy: 2,5 GJ/t_{CO2}

with absorption of 90% of CO₂ (flue gas : 10%vol CO₂)

New concept for CO₂ capture in flue gas: solvent with a lower energy of regeneration

- Framework
- Presentation of the concept
- Experimental results

Conclusion

Original concept with standard technology:
 process close to standard amine treating process
 (+ decanter + specific solvent)

• Interest of the concept:

lower energy of regeneration, about 2.5 GJ/t CO₂